Composing Parallel Software Efficiently with Lithe

Heidi Pan

Massachusetts Institute of Technology
xoxo@csail.mit.edu

Abstract

Applications composed of multiple parallel libraries perh
poorly when those libraries interfere with one another biveb
ously using the same physical cores, leading to destructs@irce
oversubscription. This paper presents the design and imgpita-
tion of Lithe, a low-level substrate that provides the basic primitives
and a standard interface for composing parallel codes eftigi
Lithe can be inserted underneath the runtimes of legacyledia
braries to providéolt-oncomposability without needing to change
existing application code. Lithe can also serve as the fationl for
building new parallel abstractions and libraries that matically
interoperate with one another.

In this paper, we show versions of Threading Building Blocks
(TBB) and OpenMP perform competitively with their originai-
plementations when ported to Lithe. Furthermore, for twpliap-
tions composed of multiple parallel libraries, we show tleatr-
aging our substrate outperforms their original, even dkpemed,
implementations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors — Run-time Environments; D.4Qpgrating
Systems Process Management; D.2.18dftware Engineeririg
Interoperability

General Terms Algorithms, Design, Languages, Performance

Keywords Composability, Cooperative Scheduling, Hierarchical
Scheduling, Oversubscription, Parallelism, Resourceddament,
User-Level Scheduling

1. Introduction

With the widespread adoption of multicore microprocessmany
software libraries are now becoming parallelized. Thelseties
exploit decades of parallel programming innovation in e
stractions, performance optimizations, and correctriesgproduc-
tivity, programmers would like toeusethese parallel libraries by
composinghem together to build applications, as is standard prac-
tice with sequential libraries. Unfortunately, compospagallel li-
brariesefficientlyis hard. The parallel libraries may interfere with
one another, sometimes delivering performance that is muacke
than a sequential implementation.

Benjamin Hindman

UC Berkeley
benh@eecs.berkeley.edu

Krste Asanovic

UC Berkeley
krste @eecs.berkeley.edu

erating system threads to represent the processor corke ma-
chine. While threads provide a natugadogramming abstraction
for some types of computation (e.g. [40]), they are a paosr
source abstractioror parallel programming, since they are mul-
tiplexed onto the same physical cores (Figure 1(a)). When to
many threads are active, each thread runs at infrequentrgré-u
dictable times, interfering with synchronization meclsams [31]
and custom scheduling policies [23]. Unpredictable mldimg
also leads to cache interference between threads, higdepiti-
mizations such as prefetching [18] and cache-blocking.[43]

Current software libraries supply ad hoc solutions to tingbp

lem. A glaring example is Intel's Math Kernel Library (MKL),
which instructs its clients to call theequentialversion of the li-
brary whenever it might be running in parallel with anothartmf
the application [19]. Such solutions destroy any sepandte&iween
interface and implementation, and place a difficult burderpm-
grammers who have to manually choose between differeratriibr
implementations depending on the calling environment.s&/still,
a programmer writing a new parallel library that encapsdMKL
will just deflect the problem to its clients. A thriving paedlsoft-
ware industry will only be possible if programmers can advity
compose parallel libraries without sacrificing performanc

One possible solution is to require all parallelism to be ex-
pressed using a universal high-level abstraction. Whileetive
in principle, this goal has proven elusive in practice. f-iteere has
been no agreement on the best parallel practices, as ewitidayc
the proliferation of new parallel languages and abstrastaver the
years. Second, itis unlikely that a competitive univerbsteaction
even exists, as they have been repeatedly outperformed tby op
mizations that leverage domain or application-specifioladge
(e.g. [6, 37]).

Our solution,Lithe, is a low-level substrate that provides the
basic primitives for parallel execution and a standardrfate for
composing arbitrary parallel libraries efficiently. Litheplaces the
virtualized thread abstraction with an unvirtualized heace thread
primitive, orhart, to represent a processing resource (Figure 1(b)).
Whereas threads provide the false illusion of unlimiteccpesing
resources, harts must be explicitly allocated and sharezhgst
the different libraries. Libraries within an applicatiomeagiven
complete control over how to manage the harts they have been
allocated, including how to allocate harts to paralleldiies they

The root of this problem is poor resource management acrossinvoke.

parallel libraries. Each parallel library creates its ovet sf op-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'10, June 5-10, 2010, Toronto, Ontario, Canada.
Copyright(© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

The runtimes of existing languages and abstractions caade e
ily ported to Lithe. This allows, for example, an applicatiaritten
in a high-level language like Haskell to efficiently inteespte with
low-level libraries that use OpenMP. In addition, Lithevesr as a
basis for building a wide range of new parallel abstractions

We have ported Intel’'s Threading Building Blocks (TBB) [34]
and GNU’s OpenMP [5] libraries to run with Lithe. We have also
implemented a new parallel libralybprocesg17], which exports
an Erlang-like actor-based programming model. As a baselie
show that the standalone execution of the ported librageopns

Application

| Library A I | Library B Library C

||
AANANNEAR A

N\ N
£ §§§§§§
Threads
|Core—0’| | Core 1—|— [Core 2| | NCore 3|

Hardware

(@

Application

| Libr:aryA I | LibraryB I | leraryC I
| coreo | | core1] [core2| [cores|
Hardware

(b)

Figure 1. In conventional systems (a), each library is only awaresobitn set of virtualized threads, which the operating systeitiplexes
onto available physical processors. Lithe, (b), providegrtualized processing resources, or harts, which areegheooperatively by the

application libraries, preventing resource oversubsorp

competitively with their original implementations. We alshow
significant performance improvements when composing these
braries in two application case studies. Our first case sttgap-
plication server modeled after Flickr.com, uses the papBlaph-
icsMagick [16] library to resize images uploaded by cliertsd
achieves roughly 2 latency improvement for the same throughput
when leveraging Lithe. Our second case study, a third-pgrdyse
QR application [7], achieves up to a kSpeedup over the origi-
nal naive implementation when leveraging Lithe, and evepem
forms the original implementation with expert manual tgniof
resource allocation. In addition, we show how parallel cosifion
can cause synchronization and scheduling to interact yoand
use a simple barrier case study to illustrate how Lithe cgrave
the situation.

2. Cooperative Hierarchical Resource Manage-
ment

Applications are built by composing libraridserarchically. For
example, an image processing application may use the popula
GraphicsMagick library [16], which in turn uses the netwgrkph-

ics libraryl i bpng (amongst others), which in turn uses the com-
pression library| i b. Programmers tend to think of this hierarchy
in terms of control: a called (bpng) invokes a calleez] i b).

In sequential computing, thisxplicit transfer of control is ac-
companied with ammplicit allocation of processing resources (e.qg.,
processor, cache) for the callee to use. In fact, the catiigrapn-
tinues after the callee has returned, i.e., yielded bagkitsessing
resources to the caller. Callers wantcmoperativelyprovide their
callees with these resources because their callees arg siaine-
thing on their behalf. Likewise, callees cooperativelyurattheir
processing resources when they are done performing theipgo
tation.

In parallel computing, a single processing resource ikistd
plicitly allocated when a caller invokes a callee, but cadlenust
obtain subsequent processing resources via other meaes, of
by creating additional operating system threads. Calleraever,
would often like to manage the allocation of resources tdexc
their callees. This enables a caller with local knowledgg. (@bout
a critical path) to optimize their execution.

In this work, we enable the management of resources tmbe
pledwith the hierarchical transfer of control between librariEur-
thermore, just as with control, processing resources doezéd
and yielded cooperatively: libraries allocate resourcebbraries
they call, and libraries return resources allocated to tivaen they
are finished computing.

This is essentially the confluence of two lines of research:
erarchical scheduling (e.g. [13, 41]) and cooperative itasking
(e.g. [1, 30]). The hierarchical scheduling schemes usaiftkies
for modular resource management, but often between uattest-
tities (typically processes). The cooperative multitagkichemes
allow each task to execute without being interrupted, lBksaften
cannot control who runs next. Our cooperative hierarcticheme
combines the two, enabling local control of resource atioceand
allowing a library to make effective use of the resourcescailted
to it without worrying about possible interference.

3. Lithe Primitives

Lithe provides two basic primitives, harts and contextsemable
library runtimes to perform parallel execution. Thart primitive
preventsuncontrolled oversubscriptionf the machine, while the
contextprimitive preventaindersubscriptiorof the machine.

A majority of programmers will be blissfully unaware of Léh
Only low-level runtime programmers, such as the implemesnod
TBB and OpenMP, will use Lithe primitives directly. Many pro
grammers, such as the implementors of GraphicsMagick and, MK
will use high-level parallel constructs and abstractiot®se run-
times will be implemented using the Lithe primtives. The a&m
der of programmers will simply invoke library routines ditly,
such as those in GraphicsMagick, without knowing whethey th
are even implemented or executed sequentially or in paralle

In the remainder of this section, we describe each of ouriprim
tives in more detalil. In the following section, we descrilmsvipar-
allel runtimes use these primitives and the rest of our satesto
share resources in a cooperative and hierarchical manner.

3.1 Harts

A hart, short for hardware thread, represents a processing re-
source. There is typically one hardware thread per physioad,
except for multithreaded machines like SMTs [39].

Application Table 1. The Lithe runtime functions and their corresponding
- scheduler callbacks.
Library A [Lithe Runtime Interface | Scheduler Callback Interface |
Library sched.r egi st er (sched) regi ster(child)
I = N | RO | A sched_unr egi ster () unr egi ster (child)
Schedgg || Schedbwp Sched:ik Scheduler sched_request (nharts) request (child, nharts)
%I%?gﬁgglé sched_ent er (chi I d) enter()

sched._yi el d() yi el d(child)
Harts sched.reenter() enter ()
ctx.nit(ctx, stack) N/A
\ YN NN L Lithe N/A

T ctx_fini(ctx)

- - <« Runtime ctxrun(ctx, fn) N/A
I Lithe Runtime Interface ctx_pause(fn) N/A
— T T ctx_resunme(ctx) N/A
I ' 1 Hardware Cores 1 ! I ctx_bl ock(ctx) bl ock(ctx)
ct x_unbl ock(ct x) unbl ock(ct x)

Figure 2. Software stack showing the callback and runtime inter-
faces.
Table 1 lists all of the runtime functions and their correstiag
scheduler callbacks. We discuss each of them in detail below
The hart primitive prevents processing resource oversilhsc)
tion in two ways. First, within an application, there idixed one- 4.1 Sharing Harts
to-one mappingetween harts and the physical hardware thread 4.1.1 Runtime Functions and Callbacks
contexts. Thus, two libraries running on two different bawill not
interfere with each other. Second, a hart must be allocatedun-
time before that runtime can execute code. This is in contoas
threads, which may be created by a runtime on-demand to &xecu

Register A new scheduler registers itself with the Lithe runtime
using thesched_r egi st er function. This function performs
four actions: (1) it records the scheduler as théd of the cur-
rent scheduler, (2) invokes the current scheduler’s (parent’s

code. regi st er callback, (3) updates the current scheduler of the hart
3.2 Contexts to be the new scheduler, and (4) inserts the new schedutethiat

)] scheduler hierarchy.
Each hart always has an associatemtext, which acts as the Invoking ther egi st er callback informs the parent that the
execution vessel for the computation running on the hare Th new child scheduler is taking over a hart. With this callbagk
context primitive allows one to suspend the current contjmrtdy parent scheduler can update any necessary state beforeingtu
blockingits context. A blocked context stores thentinuationof the hart to the child.
the computation, including the stack that the computatsausing, . . .
and any “context-local state.” Note that these are not Giisss Unregister Once a child scheduler completes its com-
continuations, but can only be used once. putation and no longer needs to manage harts, it calls

Contexts allow runtimes tmteroperatewith libraries that may ~ Sched.unregi ster. This function performs three actions:
need to block the current computation. For example, a fbrar (1) it invokes the parent scheduletsir egi st er callback, (2)
that provides a mutual exclusion lock may want to block some reverts the current scheduler of the hart to be the pareetsiér,

computation until a lock is released. Similarly, some cotapion and (3) removes the unregistering scheduler from the tieyar

calling into a network I/O library may need to be blocked Lati ~ The sched.unregi ster function does not return until all of

packet arrives. A library can avoid undersubscribing theire the child's harts have returned back to the parent.

by blocking the current context while having the underlytmayt _Invoking theunr egi st er callback informs the parent that

continue “beating” and running other contexts. this child scheduler will no longer want more harts. It alseeg .
the parent a chance to clean up any state it may have assbciate

4 Lith ; with the child.

) ithe Interface Request To request additional harts, a scheduler invokes
Much like how an application binary interface (ABI) enabieter- sched_r equest , passing the number of harts desired. This func-
operability of codes by defining standard mechanisms fakimg tion simply invokes the parent schedulergquest callback,
functions and passing arguments, Lithe enables the efficten- passing both the child that has made the request and the num-
position of parallel codes by defining standard mechanismex- ber of harts requested. If the parent chooses to, it carf itsel
changing harts. As shown in Figure 2, the Lithe substrateegfi vokesched_r equest , and propagate the resource request up the
two standard interfaces: scheduler hierarchy.

1. Aruntime interfacehat parallel runtimes use to share harts and Enter/Reenter A parent scheduler can allocate a hart to a child
manipulate contexts. scheduler by invoking theched_ent er function and passing the

. . child as an argument. This function performs two action:it(1
2. A scheduler callback interfacenat each parallel runtime must updates the current scheduler to be the child, and (2) isvthe

implement to manage its own harts and interoperate withrsthe 4 scheduler'sent er callback. With this callback, the child

scheduler can use the hart to execute some computationar gr
the hart to one of its children by invokireched_ent er . Once a
hart completes a computation it can return to the currergcider

to obtain the next task by invokingched_r eent er, which will
invoke the current scheduleest er callback.

For the remainder of this paper, we refer to the portion of
each parallel runtime that implements the callback interfas a
scheduler At any point in time, a hart is managed by exactly one
scheduler, and each scheduler knows exactly which hartenaier
its control. We call the scheduler that is currently manggirhart
thecurrent schedulerThe Lithe runtime keeps track of the current Yield Whenever a scheduler is done with a hart, it can invoke
scheduler for each hart, as well as the hierarchy of schedule sched_yi el d. The sched._yi el d function performs the fol-

Hart 0 Hart 1 Hart 2
§cal | foo
regi ster
e r equest
enter
enter
yield
yield
unr egi ster
return
\
Time
(Parent Scheduler,)

Figure 3. An example of how multiple harts might flow between a
parent and child scheduler.

lowing actions: (1) it updates the current scheduler froencthild to
the parent, and (2) invokes the parent schedulgrsl d callback,
specifying the child that yielded this hart. With this caldk, the
parent can use the hart to execute some other computatiamt, gr
the hart to another child usirgched_ent er, or return the hart
back to its parent usingched_yi el d.

4.1.2 Example

Upon receiving requests from the root scheduler, the basedsc
uler simply passes available harts directly to the root dalee via
sched_enter.

4.2 Contexts

A scheduler can allocate and manage its own contexts, gitvialy
control over how to manage its stacks, enabling optiminatgich
as linked stacks [40], stacklets [14], or simply frames [3HR}e
scheduler can also allocate and manage any context-latal st

A scheduler sets up a context by calling titex_i ni t function
and passing a stack for the context to use. A scheduler skarts
context by invokinget x_r un, and passing it a function that should
be invoked by the context. Note that after the computatiangus
the context has completed, it can be reused by subsequéntaal
ct x_run. A scheduler cleans up a context by calling the runtime
functionct x_f i ni .

Context Switching The current context can be paused using the
ct x_pause function. Thect x_pause function works similarly

to thecal | / cc control operator. Whent x_pause is invoked,

it stores the current continuation in the current contswitchedo

the transition context, and calls the function passedt to_pause
with the current context as an argument. Switching aifferent
context before invoking the function passeddbx_pause al-
lows a programmer to manipulate a context without worryibgua
running on said context’s stack. Fisher and Reppy recodrtizis
dilemma when they realized they needed to enqueue a continua
tion and atomically get off its stack before the continuation was
used by another processor [10]. Usitigx _pause deals with this
problem, and others like it, in an elegant and easy to reasounta

Figure 3 shows an example of how a parent and child scheduler manner.

use Lithe to cooperatively share harts. A parent libraris@athild
library’s f 0o function to do some computation. The implementa-

After pausing the context, a library can perform the steps ne
essary to save or discard the context before switching tetiny

tion of f oo then instantiates a scheduler to manage the parallelism g|se. For example, an I/O or synchronization library camtdte

within that function. The scheduler uses the initial hartegister
itself with its parent scheduler, who is managing the paliain
for the caller library, then requests additional harts ftbat parent
scheduler. It then begins to execute the computatidnoaf using
that hart.

After the parent scheduler has received the request, it mmay d
cide to grant additional harts to the new scheduler by invgki
sched_ent er on each of these harts. Easkbhed_ent er, in
turn, will invoke the new scheduler&snt er callback, which uses
its extra hart to help with executing the computation. Whies t
scheduler is done with the computation, it yields all of tltk a
ditionally granted harts explicitly by invokingched_yi el d. It
will also unregister itself with its parent scheduler, tmeturn from
f oo.

4.1.3 Transitioning Between Schedulers

The Lithe runtime provides a specitnsition contextfor ev-

ery hart, each including a small preallocated stack. When a
hart transitions between schedulers usinggbéed_ent er and
sched_yi el droutines, it uses its transition context to execute the
ent er andyi el d callbacks, respectively. The transition context
acts as a temporary context for a scheduler to run on befetarts

or resumes one of its own contexts. Using the transitionecant
frees a scheduler from having to coordinate with other saleesl

to share contexts and their associated stacks.

4.1.4 Base Scheduler

The Lithe runtime provides base schedulefor the application.
The base scheduler obtains harts for the application to nase f

current scheduler of the blocked context by usingah& _bl ock
function, which calls the context’s scheduleb$ ock callback.
After ct x_bl ock returns, the library can relinquish the hart back
to the current scheduler usirsghed_r eent er, which invokes
the current schedulersnt er callback.

To signify that a blocked context is now runnable, an I/O ar-sy
chronization library can invoke thet x_unbl ock function, pass-
ing the runnable context as an argument. This function iesdke
specified context’s scheduletiabl ock callback. The scheduler’s
unbl ock functionshould notresume the unblocked context using
the hart used to execute the callback, but should store tiexio
to be run later.

4.3 Putting it All Together: SPMD Scheduler Example

To help explain how to manage harts and contexts using thme Lit
runtime, we describe a simple parallel library that suppadiie
Single-Program Multiple-Data (SPMD) programming model.

The library provides two functions to its usespnd_spawn
and spnd_ti d. spnmd_spawn spawnsN tasks, each invoking
the same given function with the same given argument. Eath ta
can then figure out what to do using its task id, obtained tjinou
spnd_ti d. spmd_spawn returns after all its spawned tasks have
completed.

The crux of the SPMD library is shown as pseudocode in Fig-
ure 4. Firstspnd_spawn instantiates a SPMD scheduler, and reg-
isters that scheduler (including its callbacks) with théhkirun-
time usingsched.r egi st er (lines 2-3). The scheduler requests
additional harts usingched_r equest (line 4). Using the ini-
tial hart, the scheduler executes its computation (lineggentially

the operating system environment and serves as the parent ofrunning one SPMD task after another until they are all coteple

the first scheduler to register with Lithe, i.e., theot scheduler

(lines 10-13). It then unregisters itself with its pareimél6). The

voi d sprmd_spawn(int N, void (*func)(voidx),
SpndSched *sched = new SprmdSched(N, func,
sched._r egi ster (sched);
sched.request (N-1);
sched- >conput e() ;
sched_unregister();
del ete sched;

}

voi d SpndSched: : conpute() {
while (/* unstarted tasks */)
func(arg);

void *arg) {
arg);

© N OAWN R

13}

voi d SpndSched: :enter() {
if (/* unbl ocked paused contexts */)
ctx_resume(/* next unbl ocked context =*/);
else if (/* requests fromchildren /)
sched_enter(/* next child scheduler */);
else if (/* unstarted tasks */)
ctx = new SpmdCt x();
ctx_run(ctx, start);
el se sched.yiel d();

24}

voi d SpndSched: :start() {

conput e();
ct x_pause(cl eanup) ;

voi d SpndSched: : cl eanup(ctx) {
del ete ctx;
if (/* not all tasks conpleted */)
schedreenter();
el se
sched.yi el d();

Figure 4. SMPD scheduler pseudocode example.

spnd_spawn function cleans up the scheduler before returning
back to its caller (line 7).

Any additional harts granted by its parent will join the SPMD
scheduler through its enter callback (line 15). First, tbieesluler
tries to resume any paused context that is now runnables(life
17). Otherwise, the scheduler tries to satisfy requests fte chil-
dren (lines 18-19). Finally, it will try to create a new coxitéo start
a new SPMD task, by invoking the runtime functiohx_st ar t
with the new context and thet ar t function (lines 20-22)st ar t
will continually run the next SPMD task using that contextiun
they are all completed (line 27). It will then clean up thahiext
(line 28), and either send the hart back into the main sciegiul
loop to do more work (lines 33-34), or yield the hart back & it
parent (lines 35-36).

5. Implementation

We have implemented a complete Lithe runtime, as well as a
user-level implementation of harts, for 64-bit Linux. Ba#quire
only modest amounts of code. The implementation of Lithe is
approximately 2,300 lines of C, C++, and x86 assembly, while
the harts implementation is approximately 600 lines of C x8fl
assembly.

5.1 Lithe

The Lithe runtime defines two opaque types: schedulers and co
texts. A Lithe scheduler object contains the location offthestion
pointer table of standard callbacks, and the location o§tedul-
ing state, both of which are supplied by the correspondirgy-us
level scheduler upon registering with the runtime. A Litlohed-
uler object also contains a pointer to its parent, and a poitat

a doubly linked list of its children. Internally, the runtinkeeps

track of the scheduler hierarchy, as well as the currentcsdbe
object for each hart. Externally, the runtime gives the mmirio
each scheduler object to its parent scheduler as an opaqdéeha
for that child. The core runtime interface is in C, but we pdeva
C++ scheduler abstract base class that delineates theadgtin-
dard callbacks.

A Lithe context object contains the hart's machine state, a
pointer to its corresponding Lithe scheduler object, areddhation
of the context-local state as specified by its scheduler.rihéme
uses the POSIX ucontext to represent the hart's machire, stad
uses the GNU ucontext library to save and resume contexts. We
have made minor changes to GNU'’s ucontext library to elitgina
unnecessary system calls to change the signal mask, satiag s
and resuming contexts do not incur any kernel crossings.

5.2 Harts

Our user-level implementation represents each hart ugitigraad,
since Linux maps each pthread to its own kernel thread, aes us
the affinity extension of pthreads supported by Linux to mche
pthread to a unique core.

We create and initialize a global pool &f harts at the beginning
of the application, with\V being the number of cores in the ma-
chine. One hart is used to call the applicatiames n function. The
remaining harts sleep at a gate, waiting for work. When Lsthase
scheduler requests additional resources usarg _r equest , the
harts are released from the gate to call into the applicatemt r y
function. As harts return from thent r y function or via an explicit
har t _yi el d, they go back to waiting at the gate.

5.3 Operating System Support

We choose to implement both Lithe and harts as completelys use
level libraries rather than modifying an existing opergtsystem.
The main benefit of our approach is portability across existi
platforms that provide the necessary POSIX constructs.niaie
downfall is that an operating system is still free to mubiplour
harts with other applications running in the system. As #wmuiits

in this paper show (Section 7), however, the benefits of rieduc
the number of operating system threads and carefully magagi
their use provides better behavior even if the operatingeayss
unaware of our user-level schedulers.

Using a two-level scheduling mechanism such as scheduler ac
tivations could provide user-level Lithe schedulers witkremore
information about their running computations, such as wtmm
texts block due to page faults, or when a hart has been prednipt
addition, the operating system could notify schedulersmtheir
computations block on I/O. In lieu of such support, we canthse
existing event-based interfaces in many operating systangvoid
blocking a hart on 1/0 (similar to previous work such as Cexpri
cio [40]). In fact, in Section 6.3 we present the libprocabsary
which provides a blocking I/O interface that pauses the tpde
ing context and uses event-based mechanisms from opesyting
tems to perform I/O. This allows the hart to execute othermom
tations/contexts while the previous computation/coniextaiting
on 1/O.

6. Interoperable Parallel Libraries

We have built a wide range of interoperable scheduling, &)
synchronization libraries that use Lithe. We have portedesex-
isting popular libraries, as well as implemented our ownthis
section, we describe the original baseline for each of thiessies,
then show how to modify them to use Lithe (and thus, work with
each other).

Table 2. Approximate lines of code required to port TBB and
OpenMP.

Added | Removed | Modified | Relevant| Total
TBB 180 5 70 1,500 | 8,000
OpenMP 220 35 150 1,000 | 6,000

6.1 Threading Building Blocks

Intel's Threading Building Blocks (TBB) library [34] prodes a
high-level task abstraction to help programmers achievéope
mance and scalability without having to manually managkstas
parallel execution. Instead, a TBB scheduler uses a dynamrik-
stealing [4] approach to automatically map tasks onto cores
The original open-source Linux implementation of the TBB

library uses pthreads as its resource abstraction. The TB&Y
creates a fixed-size global pool of threads upon its iniéion,

tional threads rather than waiting for threads from othants to
return to the global pool.

In the ported version of OpenMP, each team scheduler multi-
plexes its workers onto its available harts. An OpenMP saleed
lets each worker run on a hart until it either completes ocdts-
text blocks on a synchronization operation, before runtiegnext
worker thread on that hart. In this initial implementatiansched-
uler cannot take advantage of additional harts in the miobiéxe-
cuting a parallel region, since it never redistributes itsk@rs once
it assigns them to their respective harts. However, theemphta-
tion is optimized to keep a global pool of contexts to reusesx
multiple teams for efficiency.

Porting OpenMP was more difficult than TBB because it re-
quired carefully multiplexing the worker threads, sinceytlare ex-
posed to the application programmer. It took one of the asthp-
proximately one week to port OpenMP, and another week tolerofi

and associates a worker with each of these threads. Each TBBaNd optimize the implementation to preserve cache affinitgéch

scheduler used” workers from the global pool to execute its tasks,
with N either being the number of cores in the machine or the
number specified by the user. Each of these workers repgated|
completes its own share of work, then tries to steal more rork
other workers. The original TBB library tries to preventoesce
oversubscription by sharing the global fixed-size pool oédds
between all the TBB schedulers within an application. Ofrseu
this still does not preclude TBB schedulers from interfgnimith
other non-TBB parallel libraries.

In the ported implementation of TBB, each TBB scheduler

worker thread. The second row of Table 2 shows the approgimat
number of lines of code that were added, removed, and modified
the OpenMP library.

6.3 Libprocess

Libprocess [17] is a library written in C/C++ that providesactor-
style message-passing programming model. Libprocessris ve
similar to Erlang’s process model, including basic corgfor
sending and receiving messages. Libprocess scales todumaf
thousands of concurrent processes which are schedulegiplai-

manages harts rather than threads. Since a TBB schedulsr doedable scheduling policies. In fact, scheduling policies ba im-

not know how many harts it can use upfront, it instead lazily
creates its workers for each hart that it obtains throughbritser
callback. The core algorithm for each worker remains theesam
since each worker can just start stealing work from existingkers
as soon as it is instantiated. The ported implementatianleeps
track of its child schedulers and the corresponding numbleads
they requested. In this initial implementation, harts a@nted to
children in a round-robin fashioanly after there are no tasks left
to steal and/or execute.

Porting TBB was a relatively straightforward task. It toakeo

of the authors no more than a week. The first row of Table 2 shows

the approximate number of lines of code that were added,ved)o
and modified. The column labeled “Relevant” refers to the bbeim
of lines of the TBB runtime that actually do scheduling (apaged
to scalable memory allocation, for example) in contrasheotbtal
number of lines (last column).

6.2 OpenMP

OpenMP [5] is a portable parallel programming interfacetaiom
ing compiler directives for C, C++, and Fortran. Progransnese
the directives to specify parallel regions in their sourade; which
are then compiled into calls into the OpenMP runtime libr&gch
parallel region is executed by a team of workers, each withigue
id. The number of workers in a team is specified by the user, but
defaults to the number of cores in the machine. Althoughetiee
higher level directives that allow the compiler to autoroally split
work within a parallel region across workers, the programoas
also manually assign work to each of worker by writing SPMD-
style code.

We ported the GNU Compiler Collection’s (GCC) open-source
Linux implementation of the OpenMP runtime library (libgpjn
As with the original TBB library implementation, the origih
OpenMP library also uses threads as its resource abstraétio
implicit scheduler for every team maps each of its worker® on
a different thread. For efficiency, the library keeps a glgizol
of the available threads to reuse across multiple teams thatt
when multiple teams are active, a team scheduler will creddk-

plemented directly by a client of the library, to precisebntrol a
process’s ordering, priority, etc.

In addition to the actor model, libprocess provides a ctilbec
of blocking I/O routines for using socketagcept, connect,
recv, send). Similar to Capriccio, libprocess exploits non-
blocking operating system interfaces. This allows libgsxcto run
a large number of processes that are all performing socResit/
multaneously. By using Lithe, libprocess is able to simmétausly
run multiple processes across multiple harts. This is o pifo-
cesses important improvements over Capriccio.

The libprocess implementation is roughly 2,000 lines ofecod

6.4 Barriers

In order to experiment with how synchronization primitiviager-
act with parallel libraries, we implemented some simplelseel
barriers with and without the Lithe substrate. Both implataéons
share the bulk of the code. A barrier is initialized with thember
of threads that are synchronizing with each other. Uponhiegc
the barrier, each task increments a counter atomically, thecks
to see if it was the last to arrive. If so, it signals all otheesits to pro-
ceed. Without Lithe, all other tasks simply spin on theipegive
signals until they can proceed. With Lithe, all other taghkis $or a
very short amount of time, then pause their contexts and gieh-
trol of their hart back to the current scheduler usaig<_bl ock;
the last task to reach the barrier will alert the scheduleurte
block any blocked contexts usirgg x_unbl ock. The scheduler
can then decide when to resume each of these resumable tsontex

7. Evaluation

In this section, we present results from experiments on codiiy
hardware that show the effectiveness of the Lithe substFatst,
we present numbers for the individual libraries that shost the
can implement existing abstractions with no measurableheas.
Then, we present two real-world case studies to illustrate Wwe
improve the current state-of-the-art in parallel libragyrposition.
Lastly, we show how Lithe can improve the performance ofibarr
synchronization in the face of parallel composition.

tree sum | preorder | fibonacci
Original TBB | 1.44 1.61 1.65
Ported TBB 1.23 1.40 1.45

Table 3. TBB benchmark runs (in seconds).
ft

cg is
Original OMP | 0.22 | 0.19 | 0.54
Ported OMP 0.21 | 0.13 | 0.53

Table 4. OpenMP benchmark runs (in seconds).

The hardware platform used was a quad-socket 2.3 GHz AMD
Opteron with 4 cores per socket (16 cores total). The OSgotatf
used was the 2.6.18 64-bit Linux kernel (which includes tfIN
fast pthread library). We also used Glibc 2.3.6, TBB vers2ch
update 2, and GNU OpenMP from the GCC 4.4 trunk.

7.1 Ported Libraries
To validate that porting libraries to Lithe incurs negligitor no

overhead, we ran a series of benchmarks for both OpenMP and

TBB to compare the performance between the original ancegort
implementations.

The TBB distribution includes a series of examples designed
to highlight the performance and scalability of TBB. We ramdy
chose three of these examples: a parallel tree summingithigor
a parallel preorder tree traversal, and a parallel impleatem of
fibonacci. Table 3 shows the average runtime of ten runs skthe
benchmarks for both the ported and original version.

Across all three examples, the ported TBB performs slightly
better than the original. We believe that because hartsrasterl
eagerly during the application initialization (similar #othread
pool), we are able to overlap thread creation with componatiat
occurs before TBB is actually invoked.

~#—Q0penMP = 16

—#—QOpenMP = 8
=>¢=Q0penMP =4

latency (seconds)
w

=#=0penMP =2

=&=0penMP = 1

—&—libprocess

0 0.5 1 1.5 2 2.5 3

throughput (requests / second)

Figure 5. Throughput versus latency for different configurations
of image resizing application server.

throughput versus service latency of each configuration@asmw
creased the rate at which the client made requests.

Because GraphicsMagick is parallelized using OpenMP, we
can explore a spectrum of possible configurations. We mbnual
tuned GraphicsMagick by configuring OpenMP to ugehreads
for each invocation (labeled “OpenMPN), and show results in
Figure 5. The most straightforward approach to implementiar
application server is to create a thread-per-connectiatpigrforms
each of the resizes sequentially (“OpenMP = 1"). Althougis th
version performs well at high load (point (a)), it has higtetecy
when lightly loaded and many cores sit idle causing the s¢ovee
underutilized. Manually increasing the number of thregdsx 1)

To measure the overheads of the OpenMP port, we chose to runallocated to each request helps reduce lightly loaded dgtédaut

three of the NAS parallel benchmarks [21]: conjugate gratdfast
Fourier transform, and integer sort (from NPB version 3r8bfem
size W). Table 4 shows the average runtimes for ten runs stthe
benchmarks for both the ported and original versions of @f&n
The ported OpenMP is also competitive with, if not bettentttae
original implementation.

7.2 Case Study 1: Application Server

In our first case study, we investigated the efficacy of Litbe f
server-like applications that tightly integrate 1/0 witarpllel com-
putation. Most servers use thread-per-connection pésafieoe-
cause threads providmth (a) a natural abstraction of the control-
flow required to process a request and prepare a respong (esp
cially with respect to blocking while reading and writingftom

the network) and (b) a natural form of parallelism for exemubn

a multicore machine.

Newer “application servers” serve dynamic content and may
potentially exploitparallel computations within a single request
in addition to thread-per-connection parallelism. Exagsphclude
video encoding [44], speech recognition [15], video prdidurc[3],
and online gaming (rendering, physics, and Al) [9].

We chose to study an image processing application servekr, mo
eled after Flickr's [11] user image upload server. The safenar-
chitecture of our application server is straightforwaat:éach im-
age the server receives, it performs five resize operataeafing
large, medium, small, thumbnail, and square versions aftlage.
Like Flickr, we use the popular GraphicsMagick [16] libramhich
is parallelized using OpenMP, to resize images.

To collect our performance numbers, we ran the application
server using the quad-socket Opteron, and ran the clientsepa

also reduces the saturation throughput (e.g. point (e) ittt (flo)).
In general, the more threads used to reduce lightly loadedds,
the greater the loss of saturation throughput.

Next, we implemented the application server using the &ibpr
cess library rather than threads. Only the code that setsthgr e
an actor or a thread per connection was different betweetwihe
versions. Most source code was unchanged, including the tbad
read and wrote from sockets and files, and the code that datted
GraphicsMagick. While we used the same GraphicsMagickiibr
in both versions, we linked in the Lithe-compliant OpenMRhwi
the libprocess version. We implemented a very basic fairing
scheduling policy for use by libprocess, where all conaurie-
vocations of GraphicsMagick receive roughly the same nurabe
harts. The line labeled “libprocess” in Figure 5 shows thdqre
mance of this implementation. Clearly, the libprocess enpn-
tation dominates the convex hull of all the manually tunedaras
across the range of offered throughputs (points (f), (9), faovid-
ing lower latency at each load point until the machine sadsrand
each request receives only a single hart, at which poinbpadnce
is the same as the “OpenMP = 1" case.

The workload used in testing our application servers wag ver
homogeneous, favoring the manual static tuning used in dine n
libprocess variants. With a more heterogeneous mix of insamgs,
image operations (not just resize), and network speeds gadater
degree of dynamic “scheduling” across the two levels of pelism
might be required and we would expect a greater advantaga whe
using Lithe.

7.3 Case Study 2: Sparse QR Factorization
As our second case study, we used an algorithm for sparse®R fa

arate machine connected by an Ethernet link. We measured thetorization (SPQR) developed by Davis [7], which is commonly

18

17

116

115

14

13

OpenMP TBB

Figure 6. Original SPQR performance across different thread allo-

cations to TBB and OpenMP for the deltaX input matrix (rurdim
in seconds). The performance of the Lithe version is showa as
plane to compare against all original configurations.

OpenMP

12

16
16

12 8 4
TBB

OpenMP

16 16 TBB

Figure 8. Number of L2 data cache misses of the original SPQR
for the deltaX input matrix, compared with the Lithe version

x10°
14

x 10°

WAvAVAVAY.
B
b

TBB

OpenMP 16 16

Figure 7. Average number of active SPQR threads across different Figure 9. Number of context switches of the original SPQR for the

thread allocations to TBB and OpenMP for the deltaX inputrirat

used in the linear least-squares method for solving a yaoét
problems arising from geodetic survey, photogrammetmogra-
phy, structural analysis, surface fitting, and numericihoization.

The algorithm can be viewed as a task tree, where each task

performs several parallel linear algebra matrix operatiamd peer
tasks can be executed in parallel. Near the root of the theset
is generally very little task parallelism, but each taskrapes on a
large matrix that can be easily parallelized. Near the leaf¢he

tree, however, there is a substantial task parallelism &ct ¢éask
operates on a small matrix.

Original Out-of-the-Box Implementation. Davis imple-
mented his algorithm using TBB to create the parallel tas&sh of
which then calls parallel BLAS (basic linear algebra sulgpam)
matrix routines [24] from MKL. MKL, in turn, uses OpenMP to
parallelize itself. Unfortunately, although the two typafsparal-
lelism should be complementary, TBB and MKL compete counter
productively with each other for resources. OnMércore machine,
TBB will try to run up to N tasks in parallel, and each of the tasks
will call MKL, which will try to operate onN blocks of a matrix
in parallel. This potentially create¥? linear algebra operations,

deltaX input matrix, compared with the Lithe version.

each of which were carefully crafted by MKL to fit perfectlytime
cache, but are now being multiplexed by the operating sysien
interfering with one another.

Original Manually Tuned Implementation. To curtail re-
source oversubscription, Davis manually limits the numife®S
threads that can be created by each library, effectivelijtiganing
machine resources between the libraries. The optimal amafign
depends on the size of the input matrix, the threading behagi
both libraries, the BLAS version in MKL, and the availabledia
ware resources. To find the optimal configuration, Davis badt
every combination of thread allocations for TBB and OpenM#aw
each input matrix on each of his target machines.

We reproduced Davis’ manual tuning runs for all four origina
input matrices on our own machine (see Table 5 for a descrip-
tion of the input matrices). Figure 6 shows the performarfca o
representative input matrix across all the different ttreanfigu-
rations. The out-of-the-box configuration (OMP=16, TBB¥i$6
where each library creates the default number of threadshvi$h
equal to the number of cores on the machine. Although thebut-
the-box configuration is better than the sequential vergiviP=1,

landmark deltaX ESOC Ruccil
Size 71,952 x 2,704| 68,600 x 21,961 | 327,062 x 37,830 1,977,885 x 109,900
Nonzeros| 1,146,868 247,424 6,019,939 7,791,168
Domain | surveying computer graphicg orbit estimates ill-conditioned least-squaré

Table 5. SPQR matrix workload characteristics.

landmark | deltaX | ESOC| Ruccil |

Seq OMP / Seq TBB OMP=1, TBB=1 7.8 55.1 | 230.4| 1352.7
Par OMP / Seq TBB| OMP=16, TBB=1 5.8 19.4| 106.9| 448.8
Seq OMP / Par TBB| OMP=1, TBB=16 3.1 16.8 78.7 585.8
Out-of-the-Box OMP=16, TBB=16 3.2 15.4 73.4 271.7
Manually Tuned OMP=5, TBB=3 12.0

OMP=5, TBB=16 61.1

OMP=8, TBB=11 2.9

OMP=8, TBB=16 265.6

| Lithe | [27] 104] 604] 248.3]

Table 6. SPQR (TBB/OpenMP) performance

TBB=1), it is not close to optimal. Many of the configuratichst
limit resource oversubscription achieve better perforceahan the
out-of-the-box configuration. We refer to the configuratidgth the
shortest run time as the manually tuned version (OMP=5, TBB=
for this particular input).

The top portion of Table 6 shows the performance of noteworth
configurations for all the input matrices. For all of the itguhe
out-of-the-box configuration performs much worse than tla@ua
ally tuned configuration. The table includes the speciadsagere
one of the libraries gets all of the resources (OMP=1, TBBari6
OMP=16, TBB=1). Giving OpenMP all the resources is subopti-
mal because the task-level parallelism is much more seathbh
matrix-level parallelism. However, giving TBB all the resoes is
also suboptimal because there are parts of the computatibmov
task-level parallelism but lots of matrix-level paraltsti.

To obtain a better understanding of the original perfornreane
measured active threads, cache miss, and context switbbmay-
ior for all input matrices. The results for the deltaX inpte ahown
in Figures 7, 8, and 9. As expected, Figure 7 shows that thagee
number of threads for the out-of-the-box configuration wasem
than double the number of cores in the machine. Figure 8 shows
the L2 data cache misses, which increase as the number afithre
given to OpenMP/TBB increase. Figure 9 shows the number of
OS thread context switches that occur during the run. The-num
ber of context switches increases as the number of threada gi
to OpenMP increases. However, for any fixed OpenMP configura-
tion, increasing the number of threads given to TBB decetse
number of total context switches, since the duration of timedra-
matically decreases. We hypothesize that the performarmaaly
for the OMP=2, TBB=14,15 configurations may be because the ef
fects of the OS not co-scheduling worker threads from theesam
OpenMP parallel region are more pronounced when each thread
depends on exactly one other thread, and there is a larggular
number of threads for the OS scheduler to cycle through.

Ported Implementation. We relinked the SPQR application
with the modified TBB and OpenMP libraries to run with Lithe.
We did not have to change a single line of Davis’ original code
since the TBB and OpenMP interfaces remained the same. The
bottom portion of Table 6 shows the performance results iwfgus
Lithe. This implementation even outperforms the manuailyed
configuration, because Lithe enables the harts to be moriélflex
shared between MKL and TBB, and adapt to the different ansount
of task and matrix-level parallelism throughout the coration.

with and without Lithe (mmetin seconds).

landmark deltaX ESOC Ruccil
Out-of-the-Box || 9.53x10° | 3.04x10 1.36x10° | 5.47x10”
Lithe 8.23x10° | 2.28x10 1.11x10° | 5.19x10°
Table 7. SPQR L2 Data Cache Misses.
landmark deltaX ESOC Ruccil
Out-of-the-Box || 1.03x10° | 1.04x10° | 3.40x10° | 6.08x10°
Lithe 1.47x10% | 2.21x107 | 7.79x107 | 2.50x10°
Table 8. SPQR Context Switches.
10°¢
10°}
== Lithe
B 5 =—#— Pthread (Unpinned)
T~ 10°¢ Pthread (Pinned)
'g Spin (Unpinned)
g + Spin (Pinned)
g .l %
o 10°F
£
=
10'
0

10)
4 6 10
Units of Work in Parallel

Figure 10. Performance of different barrier implementations un-
der different parallel composition configurations in teraigun-
time in nanoseconds.

Table 7 shows that the Lithe implementation has fewer L2 each
misses, and Table 8 shows that the Lithe implementation fueso

of magnitude fewer OS thread context switches than the Bithes
box configuration across all input matrices.

7.4 Barrier Synchronization

In this section, we study how synchronization and schedilin
teract in the face of parallel composition using a simpleibaex-
ample. The basic unit of work for our microbenchmark cossist
16 SPMD tasks synchronizing with each other 1000 times &t-bac

to-back barrier rendezvous (with no work in between theibarr
rendezvous). We launched between 1 and 10 of the basic dnits o
work in parallel to crudely model, for instance, Graphicgfitk or
MKL routines running in parallel, each using barriers to cyo-

nize internally.

We compared three implementations of barriers: the Glibc im
plementation of the pthread barrier, and the two user-leagiiers
described in Section 6 (one that spins, and one that codgsyat
yields using Lithe). Because the implementation of theibate-
pends on the task model, the Lithe barrier runs with the Liithe
plementation of SPMD tasks (as described in Section 4.8)bath
the pthread and spin barriers run with a pthread implemientaf
SPMD tasks (in which each SPMD task is simply a pthread). Fur-
thermore, there are two different versions of the pthreaMSP
implementation, one where each SPMD task is pinned to the cor
corresponding to its task ID, and one where the tasks aranegi
The reported measurements reflect the performance of theDSPM
implementation as well as the barrier implementation.

First, we examine the scenario where only a single unit of
work is launched. The two versions of the pthread barriefoper
comparably, with the unpinned version doing slightly bettae
to better load balancing. As expected, the unpinned spisiorer
performs better than the pthread versions. However, theepin
spin version performs worse than the pthread versions dlaatb
imbalance. The Lithe version performs the best, becauséeof t
lower SPMD task creation cost, and because most of the SPMD
tasks can simply spin for a little bit instead of having tounc
the state saving and rescheduling costs of going back irgo th
scheduler.

Next, we examine when two units of work are launched in
parallel. The pthread versions improved because they dapwac
better load balancing with more tasks than cores in the machi
The spin versions slowed down by orders of magnitude because
of destructive interference; each of the SPMD tasks hog ep th
machine resources spin-waiting rather than letting therotisks
run. The Lithe version slowed down because it must go into the
scheduler after spin-waiting for a finite amount of time; lewer,
the Lithe version is still faster than the pthread versidnsesthe
scheduling is done at user-level.

Lastly, we examine the scalability of the barrier perforemas
more and more units of work are launched in parallel. Thenumg
pthread version achieves much better load balancing asitheer
of SPMD tasks increases. Lithe also achieves slightly bédt
balancing as the number of tasks increases, but only at the sa
slow rate of improvement as the pinned pthread version €sinc
the harts are essentially pinned pthreads). Since Litheusea
level implementation, it is still at the mercy of the OS sahledto
schedule its harts.

8. Related Work

Previous systems have attempted to prevent resource bgerg
tion whenmultiple applicationsnterfere with one another. These
previous schemes fall into two main categories: OS spatigi-p
tions [8, 27, 29], and user-level adaptive heuristics [#], ®/e be-
lieve our work will integrate well with the first category torin

a two-level scheduling ecosystem, where the OS uses minimal
coarse-grained scheduling to mediate between multipléicapp
tions and gives the hardware resources allocated in eadhalspa
partition to the user-level schedulers of each applicatioman-
age directly. We believe explicit sharing of resources efgnable

to the second category of heuristic approaches that regaaie en-
tity periodically query the overall system load to guess many
resources to use, as the latter does not allow prioritindigtween
the different entities, and can easily lead to system iritab

Other systems have also attempted to prevent resource-under
utilization due to blocking of I1/0 (Scheduler Activationg] [and
CPU Inheritance [13]) or synchronization (Psyche [28] amh-C
verse [22]). In contrast, our context primitive providesragye uni-
form mechanism to address both 1/0 and synchronizatiorksige
while not requiring changes to existing OS systems.

This work builds on the well-known technique of expressing
parallelism with continuations [42]. We improve on pre\gonork
by providing a transition stack, thus obviating the needdom-
plex cross-context synchronization during context-shiitg (e.g.
[10, 12, 26]). In addition, we augment previous work to suppo
multiple parallel components, by transferring executiontool to
the appropriate scheduler, and ensuring that the compodentot
share stacks and trample on each other’s execution state.

Several other systems support multiple co-existing sdeeslu
but with varying motivations. However, all of the previousnk
differ from us in one or more of the following ways:

e Converse [22] and CPU Inheritance [13] require that child
schedulers register individugthreadswith a parent scheduler,
effectively breaking modularity and forcing the parent tamn
age individual threads on a child’s behalf. The child only re
ceives harts implicitly when its parent decides to invokesth
threads. Our parent schedulers grant harts to a child to to wi
as it pleases.

Both GHC [26] and Manticore [12] are primarily motivated by
the desire to design language primitives that enable clistom
able scheduling, rather than enabling interoperabilitynoi-
tiple custom schedulers. Although both claim to support-hie
archical nesting of schedulers, neither describe how plalti
schedulers would interact. Furthermore, a global entitviém-
ticore [12] decides how many virtual processors to allotate
each scheduler, preventing each scheduler from deciding ho
best to allocate resources among its children.

e Manticore [12] requires all schedulers use the same scimgdul
queue primitive, rather than enabling each scheduler tagan
its own parallelism in a more efficient code-specific manner.

Converse [22] does not define a standard scheduler callback i
terface, and thus does not support true plug-and-playdpéss
ability. A child scheduler must know its parent’s specifitein
face in order to register its threads.

Unlike GHC [26] and Manticore [12], Lithe is language-
agnostic. Unlike Psyche [28], CPU Inheritance [13], and
HLS [33], we do not impose the adoption of a new OS.

The virtual processor abstraction of HLS [33] only intedac
between a single pair of parent-child schedulers. Thusitigig
access to a physical processor down the hierarchy invobtes a
vating a different virtual processor at every generatiamtter-
more, all scheduling activity are serialized, making HLS8i-di
cult to scale to many cores.

9. Future Work

We are looking into extending this work in four main areas:

Ports of Additional Language Features.In this paper, we ex-
plored how parallel abstractions from different languaged li-
braries can be composed efficiently. We ported and created ru
times that support different styles of parallel abstrawjorang-
ing from tasks to loops to actors. In the future, we would also
like to port managed and functional language runtimes oitteel
to explore how other language features interact with sdivegiu
and composition. For example, we imagine implementing a par
allel garbage collector as a child scheduler of its languagéme,
which when given its own harts to manage can decide how best to

parallelize and execute memory reallocation operationisewiot
interfering with the main computation.

Preemptive Programming Models.The current system is de-
signed to support the large set of applications that perfoet
with cooperative scheduling, where preemption is ofteneaxp
sive and unnecessary [32]. For example, preemptive roobid-r
scheduling of threads within an application can introducstig
itous interference when the threads are at the same priexigJ.
User-level schedulers should favor efficiency over an aatyitno-
tion of fairness. An application may, however, want to reworits
computation based on dynamic information from inputs, &seor
performance measurements. For this class of applicatwasre
looking into extending Lithe to enable a parent schedulastofor
a hart back from its child.

Kernel-Level Implementation of Primitives. Our current sys-
tem implements the hart and context primitives purely inruse
space. This enables parallel codes within an applicationtes-
operate efficiently without the requirement of adopting & o@-
erating system. Nonetheless, supporting the hart and xtoale
stractions in the OS will provide additional benefits. Wlileser-
level hart implementation can provide performance isofatie-
tween parallel codes within a single application, a keteed! hart
implementation can provide further performance isolalietween
multiple applications. In addition, a kernel-level coriterplemen-
tation would enable blocking I/O calls to interoperate sieasly
with user-level schedulers (e.g. [2]).

Management of Non-Processing Resource®epending on
the characteristics of the code and the machine, a librasy ea
more memory and bandwidth-bound than compute-bound. By pro
viding a better resource abstraction for cores, we havadyree-
duced the number of threads of control that are obliviousl-m
tiplexed, thus implicitly reducing the pressure on the mansys-
tem and network. However, to give libraries greater cortvelr the
machine, we are looking into providing primitives beyondtsao
represent other resources, such as on-chip cache capaditffa
chip memory bandwidth. This may require hardware suppaort fo
partitioning those resources (e.g. [20, 25]), beyond tlesiegally
available in commercial machines today.

10. Conclusion

In this paper, we have shown the difficulties of composingltelr
libraries efficiently. We have also argued that the manageofee-
sources should be coupled with the hierarchical transfeoofrol
between libraries. Our solution, Lithe, is a low-level suée that
allows libraries to cooperatively share processing ressswithout
imposing any constraints on how the resources are used fe-imp
ment parallel abstractions. Using Lithe, we are able to émant
multiple existing parallel abstractions with no measuzabver-
head, while enabling parallel libraries to be composed iefiity.
We believe this capability is essential for parallel softvéo be-
come commonplace.

11. Acknowledgements

We would like to thank George Necula and the rest of Berkeley
Par Lab for their continued feedback on this work. We'd like t
thank Tim Davis for providing us with our SPQR case study and
answering all our questions about its complicated detaiéswould
also like to thank Arch Robison and Greg Henry for their hellpf
feedback on our uses of TBB and MKL. We'd like to thank Al

Ghodsi and Sam Larsen, as well as our anonymous reviewers, fo

their helpful comments for strengthening our presentation

This research was supported by Microsoft (Award #024268) an
Intel (Award #024894) funding and by matching funding by U.C
Discovery (Award #DIG07-10227). Additional support confresn

Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA
Samsung, and Sun Microsystems. The authors would alsodike t
acknowledge the support of the Gigascale Systems Reseacals F
Center, one of five research centers funded under the Foaus Ce
ter Research Program, a Semiconductor Research Corpopatio
gram. Benjamin Hindman has in part been supported by a Ndtion
Science Foundation Graduate Research Fellowship. Anyassn
findings, conclusions, or recommendations expressed snptlid-
lication are those of the authors and do not necessarilyctefie
views of the National Science Foundation.

References

[1] Atul Adya et al. Cooperative task management without oarstack
management. IWSENIX 2002.

[2] Thomas Anderson et al. Scheduler activations: Effeckernel sup-
port for the user-level management of parallelismSMSR 1991.

[3] Animoto. http://www.animoto.com.

[4] Robert Blumofe et al. Cilk: An efficient multithreadedntime system.
In PPOPR 1995.

[5] Rohit Chandra et al. Parallel Programming in OpenMP Morgan
Kaufmann, 2001.

[6] Jike Chong et al. Scalable hmm based inference enginarie |
vocabulary continuous speech recognitionl@ME, 2009.

[7] Timothy Davis. Multifrontal multithreaded rank-reve®y sparse QR
factorization. Transactions on Mathematical Softwagubmitted.

[8] K. Dussa et al. Dynamic partitioning in a Transputer eoriment. In
SIGMETRICS1990.

[9] EVE Online. http://www.eveonline.com.

[10] Kathleen Fisher and John Reppy. Compiler support fgntiveight
concurrency. Technical report, Bell Labs, 2002.

[11] Flickr. http://www.flickr.com.

[12] Matthew Fluet et al. A scheduling framework for gengratpose
parallel languages. IICFP, 2008.

[13] Bryan Ford and Sai Susarla. CPU inheritance schedulingd®SD]|,
1996.

[14] Seth Copen Goldstein et al. Lazy threads: Implemersgifagt parallel
call. Journal of Parallel and Distributed Computing996.

[15] Google Voice. http://voice.google.com.

[16] GraphicsMagick. http://www.graphicsmagick.org.

[17] Benjamin Hindman.
http://www.eecs.berkeley.edu/ benh/libprocess.

[18] Parry Husbands and Katherine Yelick. Multithreadingl @ne-sided
communication in parallel lu factorization. Bupercomputing2007.

[19] Intel. Math Kernel Library for the Linux Operating System: User’s
Guide 2007.

[20] Ravi lyer. CQoS: A framework for enabling QoS in sharedles of
CMP platforms. INCS, 2004.

[21] Haogiang Ji et al. The OpenMP implementation of NAS [para
benchmarks and its performance. Technical report, NASA #\me
Research Center, 1999.

[22] Laxmikant V. Kale, Joshua Yelon, and Timothy Knauff. réads for
interoperable parallel programming.anguages and Compilers for
Parallel Computing 1996.

[23] Jakub Kurzak et al. Scheduling linear algebra openation multicore
processors. Technical report, LAPACK, 2009.

[24] C. L. Lawson et al. Basic linear algebra subprogramd$-foRTRAN
usage.Transactions on Mathematical Softwaf979.

[25] Jae Lee et al. Globally-synchronized frames for guiaeuoh quality-
of-service in on-chip networks. K 8CA 2008.

[26] Peng Li et al. Lightweight concurrency primitives. tHaskell 2007.

[27] Rose Liu et al. Tessellation: Space-time partitioninga manycore
client OS. InHotPar, 2009.

[28] Brian Marsh et al. First-class user-level threa@S Review1991.

[29] Cathy McCann et al. A dynamic processor allocation golfor
multiprogrammed shared-memory multiprocessofsansactions on
Computer System4993.

[30] Ana Lucia De Moura and Robert lerusalimschy. Revigitoroutines.
Transactions on Programming Languages and Syst26G9.

[31] Rajesh Nishtala and Kathy Yelick. Optimizing collegticommunica-
tion on multicores. IrHotPar, 2009.

Libprocess.

[32] Simon Peter et al. 30 seconds is not enough! a study afatipg
system timer usage. Burosys 2008.

[33] John Regehr.Using Hierarchical Scheduling to Support Soft Real-
Time Applications in General-Purpose Operating Systéth® thesis,
University of Virginia, 2001.

[34] James Reinderdntel Threading Building Blocks: Oultfitting C++ for
Multi-core Processor ParallelismO’Reilly, 2007.

[35] Charles Severance and Richard Enbody. Comparing gzregisling
with dynamic space sharing on symmetric multiprocessoirsyuesu-
tomatic self-allocating threads. IRPS 1997.

[36] Stackless Python. http://www.stackless.com.

[37] Guangming Tan et al. A parallel dynamic programmingalym on
a multi-core architecture. IBPAA 2007.

[38] Andrew Tucker and Anoop Gupta. Process control and didireg
issues for multiprogrammed shared-memory multiprocessoDS
Review 1989.

[39] Dean Tullsen et al. Exploiting choice: Instructiondetand issue on
an implementable simultaneous multithreading processoiSCA
1996.

[40] Rob von Behren et al. Capriccio: Scalable threads feriret services.
In SOSR2003.

[41] Carl Waldspurger and William Weihl. Lottery schedginFlexible
proportional-share resource managemenO$8D|, 1994.

[42] Mitchell Wand. Continuation-based multiprocessihgLFP, 1980.

[43] Samuel Williams et al. Optimization of sparse matreetor multipli-
cation on emerging multicore platforms. Supercomputing2007.

[44] YouTube. http://www.youtube.com.

